Thursday, August 10, 2017



Many materials used in our industrial world require energy from mining to manufacturing for processing and transportation.  The energy for some of these products is in the form of high temperatures.   1100°C - 2000°F

There are proposals that solar and wind energy collecting devices can provide the energy to maintain the industrial world.  To look at this possibility, solar electric panels, wind turbines and concentrated solar installations in the form of parabolic trough collectors (PTC) have been assessed.

The energy requirements in 2010 for the following essential components of our industrial world are provided: steel, aluminum, chromium, copper, manganese, cement and glass.  This energy would be mining, processing and transporting to name some.  Other important components of the industrialized world such as nickel and cobalt are not considered because they are part of the high temperature processing of other ore metals.

The kWh output and area required for installations of solar electric panels, wind turbines and PTC has been researched.   This then is divided into the energy (exajoules converted to kWh) required for global production of each material in 2010.

ExaJoules = 1000000000000000000

1.0E-18 exajoule = 2.7777777777778E-7 kilowatt hours = .00000028 kilowatt hours.

Smil, Vaclav.  2014. Smil, Vaclav.  2014. Making the Modern World: Materials and Dematerialization.
“Net energy analysis for concentrated solar power plants in northern Chile” 

[] Solar Electric Panels []
Using the Topaz Solar installation as the example,
To provide the energy in electrical units for these
Seven essential materials would require
121,214.45 square miles of solar electric collectors
And 114,834,742,506 panels.

Three installations are used as examples

Shepard’s Flat Wind Farm
Alta Wind Energy Center
London Offshore Array

To provide the energy in electricity
for the named seven essential materials would require:

Shepard’s Flat Wind Farm
257,472 square miles and 2,807,276 wind turbines

Alta Wind Energy Center
30,985 square miles and 3,718,200 wind turbines

London Offshore Array
312,315 square miles and 797,400 wind turbines


Two installations are used as examples

To provide the energy in electricity for
the seven named essential materials would require:

Andasol Solar Power Station
77,183.4 square miles of PTCs

Solana Generating Station
52,791 square miles of PTCs


Solar Electric Panels:
Topaz Solar Farm (550-megawatt photovoltaic power station in San Luis Obispo, CA) 
9 million solar panels
550 MW Capacity
9.5 square miles
Annual output, 1,301 GWh (125 MW avg. power).

1,301 GWh = 1301000000 kWh
1.66111E+13kWh (total from chart)
divided by 1301000000 kWh
Equals 12759.42
Area needed
12759.42 times 9.5 square miles
121214.45 Square Miles of Solar Electric Collectors

Panels needed
9,000,000 times 12759.42
114,834,742,506 Panels

The sun shines during the day, not every day.

So of course the energy would need to be stored

Most high temperature kilns run 24/7,

365 days/year for up to 18 years.

The output of a wind turbine depends on the turbine's size and the wind's speed through the rotor. An average onshore wind turbine with a capacity of 2.5–3 MW can produce more than 6 million kWh in a year – enough to supply 1,500 average EU households with electricity.

The original "Alta-Oak Creek Mojave Project" plan consisted of up to 320 wind turbines occupying a 9,000-acre (36 km2) area while producing 800 MW (1,100,000 hp) of power.

Every wind turbine has a range of wind speeds, typically around 30 to 55 mph, in which it will produce at its rated, or maximum, capacity. At slower wind speeds, the production falls off dramatically. If the wind speed decreases by half, power production decreases by a factor of eight. On average, therefore, wind turbines do not generate near their capacity. Industry estimates project an annual output of 30-40%, but real-world experience shows that annual outputs of 15-30% of capacity are more typical.
With a 25% capacity factor, a 1.5-MW turbine would produce
1.5 MW × 365 days × 24 hours × 25% = 3,285 MWh = 3,285,000 kWh


How much land is needed for a wind turbine?
In an array that can take advantage of the wind from any direction, the GE needs 82 acres and the Vestas V90 111 acres per tower. In practice, the area varies, averaging about 50 acres per megawatt of capacity. On mountain ridges, the turbines are generally squeezed in at about 10 MW per mile.

Shepherds Flat wind farm is being developed in Oregon, US. The 845MW project will be the largest wind farm in the world. .  .  .  Annual output of the Shepherds Flat wind farm will be 1,797GWh. 
The project includes 338 wind turbines, with a 2.5MW capacity each
Shepherds Flat will cover an area of 80 square kilometres  (31 square miles)


1.66111E+13kWh (from chart) divided by
8305.55 more to provide for energy required

Area Needed
80 square kilometres = 30.8882 square miles
8305.55 times 31 square miles
257472 square miles of wind turbines
Turbines needed
338 times 8305.55
2807276 Wind Turbines


1.66111E+13kWh (from chart) divided by
6197 more to provide for energy required

Area Needed
3200 acres = 30.8882 square miles
6197 times 5 square miles
30985 square miles of wind turbines

Turbines needed
600 times 6197
3718200 Wind Turbines


.66111E+13kWh (from chart) divided by
2500000000kWh Equals
6645 more to provide for energy required

Area Needed
122 square kilometers = 47 square miles
6645 times 47 square miles
312315 square miles of wind turbines

Turbines needed
120 times 6645
797400 Wind Turbines

The wind does not blow constantly nor consistently.

So of course the energy would need to be stored

Most high temperature kilns operate

24/7, 365 days a year for up to 18 years.




2.3 square miles (1483 acres)   
Annual output 495 GWh

.66111E+13kWh (from chart) divided by
495000000kWh Equals
33558 more to provide for energy required

Area Needed
33558 times 2.3 square miles
77183.4 square miles of PTCs



Covers an area of 1,920 acres

.66111E+13kWh (from chart) divided by
944000000kWh Equals
17597 more to provide for energy required

Area Needed
17597 times 3 square miles
52791 square miles of PTCs

The sun shines during the day, not every day.
So of course the energy would need to be stored
Most high temperature kilns operate 24/7,
365 days a year for up to 18 years.

There are many other critical components of our global industrialized world that require industrial heat (lead, silver, tin, food processing) that are right at the top heating limit of solar devices.  They must also be included in an all “renewable” future. If only half of important materials were provided, what would our world be like?



Friday, July 14, 2017


In the USA –
“Glass manufacturing accounted for 1% of total industrial energy use in EIA's most recent survey of the manufacturing sector. Overall fuel use is dominated by natural gas (73%) and electricity (24%), with the remaining share (3%) from several other fuels. Natural gas use at glass manufacturing facilities in 2010 was 146 trillion Btu, about 143 billion cubic feet. 

If we convert the natural gas to kWh, we get:
143 billion cubic feet Natural Gas  =  41,909,163,034.63 kWh

Annual output, 1,301 GWh (125 MW avg. power). Website Topaz Solar Farm is a 550-megawatt (MW) photovoltaic power station in San Luis Obispo ...
Construction cost‎: ‎$2.4 billion
Construction began‎: ‎2011
Annual output‎: ‎1,301 GWh; (125 MW avg. power)
Capacity factor‎: ‎24.4% (2014-2015)

From above:
143 billion cubic feet Natural Gas  = 41,909,163,034.63 kWh
The Annual output of Topaz Solar Farm is:
1,301 GWh  = 1301000000 kWh
It would take 32 of these installations to replace the energy
used for just the glass made in the USA in the year 2010. 
That would be 288,000,000 solar panels.
10 Mahattans
Almost 46,000 Football fields.

The sun shines during the day and not every day.
So of course the energy would need to be stored because glass factories run 24/7 365 days/year for up to 18 years.

The USA is only a part of the glass manufacturer globally.

Even though flat glass accounts only about 16% of the global glass industry, most information on market structure focus on this segment. The global market for flat glass in 2010 was approximately 56 million tonnes. This is dominated by Europe, China and North America, which together account for around three-quarters of global demand for flat glass. Of total global market demand in 2010, it is estimated that 33 million tonnes was for high quality float glass, 1 million tonnes for sheet glass and 2 million tonnes for rolled glass. The remaining 20 million tonnes reflects demand for lower quality float, produced mainly in China. The significance of China as a market for glass has been increasing rapidly since the early 1990s as the country has become more open to foreign investment and the economy has expanded. In the early 1990s China accounted for about one fifth of world glass demand, but now accounts for 51%.

.  .  .  the energy intensity of continuous glass furnaces in Europe and the United States were reported as 4-10 GJ/t of container glass and 5-8.5 GJ/t of flat glass.

Each week, between 350 and 400 float glass lines
around the world yield about 1,000,000 tons of glass.

The Float Glass Process
The dominant method of making flat glass is the float-glass process. First, after mixing the raw ingredients in the batch house, they are fed into the furnace and melted at 1550 °C.   [2822F]
Thereafter, the melted glass flows onto the top of a bath filled with molten tin at 1050 °C. [1922F]  The atmosphere in the bath is a mix of nitrogen and hydrogen that prevents the oxidation of the tin. Because tin has a higher density than glass, the glass spreads out on top of the tin, giving it a smooth, even surface. Some tin incorporates into the surface of the glass in contact with the bath, this side of the glass is referred to the tin side, as opposed to the air side. Next, the glass passes into the annealing lehr, a long oven with a temperature gradient, where the glass is slowly cooled to 40 °C to prevent it from cracking [14]. It is also possible to apply a coating (anti-reflection, TCO, etc.) either within the tin bath or just after the tin bath via chemical vapor
deposition. Finally, the glass is inspected for defects, coated with Lucite separating media to prevent scratches when the glass is packed and shipped, and cut to the required size.


How Glass Is Made

Float plants normally are sited near a silica source, and often near a customers facility, to minimize transportation costs, which can be 15% of total costs. Also, they often are built in areas with low electricity costs, since the float process is energy-intensive; a plant uses 14 million therms (410 million kilowatt hours) of energy per year.

Most photovoltaic modules use glass. Crystalline-silicon technologies use glass cover
plates to provide structural strength to the module and to encapsulate the cells. Thin-film solar technologies also often use glass as the substrate (or superstrate) on which the device is built [3]. In fact, for the majority of solar modules in production, glass is the single largest component by mass and in double glass thin-film PV, and it comprises 97% of the module.

It is important to understand that this is not the only high temperature process required for an industrial world.  See chart below.